Mean Value Theorems

Leave a Comment
In mathematics, the mean value theorem states, roughly: that given a planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints.

The theorem is used to prove global statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.

More precisely, if a function f is continuous on the closed interval [a, b], where a < b, and differentiable on the open interval (a, b), then there exists a point c in (a, b) such that

A special case of this theorem was first described by Parameshvara (1370–1460) from the Kerala school of astronomy and mathematics in his commentaries on Govindasvāmi and Bhaskara II.The mean value theorem in its modern form was later stated by Augustin Louis Cauchy (1789–1857). It is one of the most important results in differential calculus, as well as one of the most important theorems in mathematical analysis, and is useful in proving the fundamental theorem of calculus. The mean value theorem follows from the more specific statement of Rolle's theorem, and can be used to prove the more general statement of Taylor's theorem (with Lagrange form of the remainder term).


0 comments:

Post a Comment