Analytic geometry, or analytical geometry, has two different meanings in mathematics. The modern and advanced meaning refers to the geometry of analytic varieties. This article focuses on the classical and elementary meaning.
In classical mathematics, analytic geometry, also known as coordinate geometry, or Cartesian geometry, is

Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and squares, often in two and sometimes in three dimensions. Geometrically, one studies the Euclidean plane (2 dimensions) and Euclidean space (3 dimensions). As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. The numerical output, however, might also be a vector or a shape. That the algebra of the real numbers can be employed to yield results about the linear continuum of geometry relies on the Cantor–Dedekind axiom.
Co-Ordinates:

Other coordinate systems are possible. On the plane the most common alternative is polar coordinates, where every point is represented by its radius r from the origin and its angle θ. In three dimensions, common alternative coordinate systems include cylindrical coordinates and spherical coordinates.
0 comments:
Post a Comment